Wednesday, May 30, 2012

Site to Site VPN, Remote VPN

Remote-access VPN

A remote-access VPN allows individual users to establish secure connections with a remote computer network. Those users can access the secure resources on that network as if they were directly plugged in to the network's servers. An example of a company that needs a remote-access VPN is a large firm with hundreds of salespeople in the field. Another name for this type of VPN is virtual private dial-up network (VPDN), acknowledging that in its earliest form, a remote-access VPN required dialing in to a server using an analog telephone system.

There are two components required in a remote-access VPN. The first is a network access server (NAS, usually pronounced "nazz" conversationally), also called a media gateway or a remote-access server (RAS). (Note: IT professionals also use NAS to mean network-attached storage.) A NAS might be a dedicated server, or it might be one of multiple software applications running on a shared server. It's a NAS that a user connects to from the Internet in order to use a VPN. The NAS requires that user to provide valid credentials to sign in to the VPN. To authenticate the user's credentials, the NAS uses either its own authentication process or a separate authentication server running on the network.

Site-to-site VPN

A site-to-site VPN allows offices in multiple fixed locations to establish secure connections with each other over a public network such as the Internet. Site-to-site VPN extends the company's network, making computer resources from one location available to employees at other locations. An example of a company that needs a site-to-site VPN is a growing corporation with dozens of branch offices around the world.
There are two types of site-to-site VPNs:
  • Intranet-based -- If a company has one or more remote locations that they wish to join in a single private network, they can create an intranet VPN to connect each separate LAN to a single WAN.
  • Extranet-based -- When a company has a close relationship with another company (such as a partner, supplier or customer), it can build an extranet VPN that connects those companies' LANs. This extranet VPN allows the companies to work together in a secure, shared network environment while preventing access to their separate intranets.
Even though the purpose of a site-to-site VPN is different from that of a remote-access VPN, it could use some of the same software and equipment. Ideally, though, a site-to-site VPN should eliminate the need for each computer to run VPN client software as if it were on a remote-access VPN. Dedicated VPN client equipment, described later in this article, can accomplish this goal in a site-to-site VPN.
Now that you know the two types of VPNs, let's look at how your data is kept secure as it travels across a VPN.

Friday, May 25, 2012

Public-key infrastructure

Public-key infrastructure

A public-key infrastructure (PKI) is a set of hardware, software, people, policies, and procedures needed to create, manage, distribute, use, store, and revoke digital certificates.[1]
In cryptography, a PKI is an arrangement that binds public keys with respective user identities by means of a certificate authority (CA). The user identity must be unique within each CA domain. The binding is established through the registration and issuance process, which, depending on the level of assurance the binding has, may be carried out by software at a CA, or under human supervision. The PKI role that assures this binding is called the Registration Authority (RA). The RA ensures that the public key is bound to the individual to which it is assigned in a way that ensures non-repudiation.

Certificate authorities

The primary role of the CA is to digitally sign and publish the public key bound to a given user. This is done using the CA's own private key, so that trust in the user key relies on one's trust in the validity of the CA's key. The mechanism that binds keys to users is called the Registration Authority (RA), which may or may not be separate from the CA. The key-user binding is established, depending on the level of assurance the binding has, by software or under human supervision.
The term trusted third party (TTP) may also be used for certificate authority (CA). Moreover, PKI is itself often used as a synonym for a CA implementation.

Temporary certificates & single sign-on

This approach involves a server that acts as an online certificate authority within a single sign-on system. A single sign-on server will issue digital certificates into the client system, but never stores them. Users can execute programs, etc. with the temporary certificate. It is common to find this solution variety with x.509-based certificates

 Contents of a typical digital certificate

Serial Number: Used to uniquely identify the certificate.
Subject: The person, or entity identified.
Signature Algorithm: The algorithm used to create the signature.
Signature: The actual signature to verify that it came from the issuer.
Issuer: The entity that verified the information and issued the certificate.
Valid-From: The date the certificate is first valid from.
Valid-To: The expiration date.
Key-Usage: Purpose of the public key (e.g. encipherment, signature, certificate signing...).
Public Key: The public key.
Thumbprint Algorithm: The algorithm used to hash the public key.
Thumbprint: The hash itself, used as an abbreviated form of the public key.

IPSec (ESP, AH, DES, MD5, SHA, DH)

IPSec (ESP, AH, DES, MD5, SHA, DH)

Internet Protocol Security (IPsec) is a protocol suite for securing Internet Protocol (IP) communications by authenticating and encrypting each IP packet of a communication session. IPsec also includes protocols for establishing mutual authentication between agents at the beginning of the session and negotiation of cryptographic keys to be used during the session.

Psec originally was developed at the Naval Research Laboratory as part of a DARPA-sponsored research project. ESP was derived directly from the SP3D protocol, rather than being derived from the ISO Network-Layer Security Protocol (NLSP). The SP3D protocol specification was published by NIST, but designed by the Secure Data Network System project of the National Security Agency (NSA), IPsec AH is derived in part from previous IETF standards work for authentication of the Simple Network Management Protocol (SNMP).

ESP  =  Encapsulating Security Payload

Encapsulating Security Payload (ESP) is a member of the IPsec protocol suite. In IPsec it provides origin authenticity, integrity, and confidentiality protection of packets. ESP also supports encryption-only and authentication-only configurations, but using encryption without authentication is strongly discouraged because it is insecure.Unlike Authentication Header (AH), ESP in transport mode does not provide integrity and authentication for the entire IP packet. However, in Tunnel Mode, where the entire original IP packet is encapsulated with a new packet header added, ESP protection is afforded to the whole inner IP packet (including the inner header) while the outer header (including any outer IPv4 options or IPv6 extension headers) remains unprotected. ESP operates directly on top of IP, using IP protocol number 50.

AH = Authentication Header

Authentication Header (AH) is a member of the IPsec protocol suite. AH guarantees connectionless integrity and data origin authentication of IP packets. Further, it can optionally protect against replay attacks by using the sliding window technique and discarding old packets.

DES = Data Encryption Standard

Data Encryption Standard is a previously predominant algorithm for the encryption of electronic data. It was highly influential in the advancement of modern cryptography in the academic world.

Thursday, May 17, 2012

Authentication, Authorization and Accounting

Authentication, Authorization and Accounting 


Authentication
Authentication refers to the process where an entity's identity is authenticated, typically by providing evidence that it holds a specific digital identity such as an identifier and the corresponding credentials. Examples of types of credentials are passwords, one-time tokens, digital certificates, and phone numbers (calling/called).

Authorization
The authorization function determines whether a particular entity is authorized to perform a given activity, typically inherited from authentication when logging on to an application or service. Authorization may be determined based on a range of restrictions, for example time-of-day restrictions, or physical location restrictions, or restrictions against multiple access by the same entity or user. Typical authorization in everyday computer life is for example granting read access to a specific file for authenticated user. Examples of types of service include, but are not limited to: IP address filtering, address assignment, route assignment, quality of Service/differential services, bandwidth control/traffic management, compulsory tunneling to a specific endpoint, and encryption.

Accounting
Accounting refers to the tracking of network resource consumption by users for the purpose of capacity and trend analysis, cost allocation, billing.[4] In addition, it may record events such as authentication and authorization failures, and include auditing functionality, which permits verifying the correctness of procedures carried out based on accounting data. Real-time accounting refers to accounting information that is delivered concurrently with the consumption of the resources. Batch accounting refers to accounting information that is saved until it is delivered at a later time. Typical information that is gathered in accounting is the identity of the user or other entity, the nature of the service delivered, when the service began, and when it ended, and if there is a status to report.

 
1)The client establishes connection with the router 
2)The router prompts the user for their username and password 
3)The router authenticates the username and password in the local database. The user is authorized to     access the network based on information in the local database.



Thursday, May 10, 2012

Context-based Access Control

Context-based Access Control   

Context-based access control (CBAC) intelligently filters TCP and UDP packets based on application layer protocol session information and can be used for intranets, extranets and internets. CBAC can be configured to permit specified TCP and UDP traffic through a firewall only when the connection is initiated from within the network needing protection. (In other words, CBAC can inspect traffic for sessions that originate from the external network.) However, while this example discusses inspecting traffic for sessions that originate from the external network, CBAC can inspect traffic for sessions that originate from either side of the firewall. This is the basic function of a stateful inspection firewall.

CBAC can also be used with Network Address Translation (NAT), but the configuration in this document deals primarily with pure inspection. If you perform NAT, your access lists need to reflect the global addresses, not the real addresses. 
  
Without CBAC, traffic filtering is limited to access list implementations that examine packets at the network layer, or at most, the transport layer. However, CBAC examines not only network layer and transport layer information but also examines the application-layer protocol information (such as FTP connection information) to learn about the state of the TCP or UDP session. This allows support of protocols that involve multiple channels created as a result of negotiations in the FTP control channel. Most of the multimedia protocols as well as some other protocols (such as FTP, RPC, and SQL*Net) involve multiple control channels.

References : http://en.wikipedia.org/wiki/Context-based_access_control
 

Access Control List

Access Control Lists 

An access control list (ACL), with respect to a computer file system, is a list of permissions attached to an object. An ACL specifies which users or system processes are granted access to objects, as well as what operations are allowed on given objects. Each entry in a typical ACL specifies a subject and an operation. For instance, if a file has an ACL that contains (Alice, delete), this would give Alice permission to delete the file.

Cisco routers support two basic types of IP access lists:
·         Standard—Filter IP packets based on the source address only.
       ·         Extended—Filter IP packets based on several attributes

Range of access list 

Type Range
IP Standard 1–99
IP Extended 100–199
IP Standard Expanded Range 1300–1999
IP Extended Expanded Range 2000–2699



Standard ACLs

A standard IP ACL is simple; it filters based on source address only. You can filter a source network or a source host, but you cannot filter based on the destination of a packet, the particular protocol being used such as the Transmission Control Protocol (TCP) or the User Datagram Protocol (UDP), or on the port number. You can permit or deny only source traffic.

Extended ACLs:

An extended ACL gives you much more power than just a standard ACL. Extended IP ACLs check both the source and destination packet addresses. They can also check for specific protocols, port numbers, and other parameters, which allow administrators more flexibility and control.

Named ACLs

One of the disadvantages of using IP standard and IP extended ACLs is that you reference them by number, which is not too descriptive of its use. With a named ACL, this is not the case because you can name your ACL with a descriptive name. The ACL named DenyMike is a lot more meaningful than an ACL simply numbered 1. There are both IP standard and IP extended named ACLs.
Another advantage to named ACLs is that they allow you to remove individual lines out of an ACL. With numbered ACLs, you cannot delete individual statements. Instead, you will need to delete your existing access list and re-create the entire list.

References : http://computernetworkingnotes.com/network-security-access-lists-standards-and-extended/access-control-list.html